DACSS 603 Final Project Work: “Further Analysis”
Continuing this post by reading in the data I put together in my exploratory analysis. A full accounting of the variables and descriptions are in the “About” tab of this GitHub Page.
# A tibble: 6 x 72
country weight imp_family imp_friends imp_leisure imp_politics
<chr> <dbl> <int> <int> <int> <int>
1 Albania 0.697 2 1 2 3
2 Albania 0.697 1 1 4 4
3 Albania 0.697 1 2 2 4
4 Albania 0.697 1 2 2 4
5 Albania 0.697 1 1 2 4
6 Albania 0.697 1 3 3 4
# ... with 66 more variables: imp_work <int>, imp_religion <int>,
# sat_happiness <int>, sat_health <int>, sat_life <int>,
# sat_control <int>, willingness_fight <int>,
# interest_politics <int>, prop_petition <int>,
# prop_boycotts <int>, prop_demonstrations <int>,
# prop_strikes <int>, self_position <int>, conf_churches <int>,
# conf_armed <int>, conf_press <int>, conf_unions <int>, ...
# A tibble: 6 x 23
country population region users family friends leisure politics
<chr> <chr> <chr> <int> <dbl> <dbl> <dbl> <dbl>
1 Albania 3,088,385 Southern~ 57 1.02 1.73 2.01 3.30
2 Andorra 85,645 Southern~ 6 1.12 1.54 1.42 2.94
3 Argentina 45,864,941 South Am~ 11 1.09 1.54 1.81 2.81
4 Armenia 3,011,609 Western ~ 16 1.11 1.74 1.99 2.79
5 Australia 25,809,973 Oceania 717 1.11 1.48 1.65 2.41
6 Austria 8,884,864 Western ~ 3276 1.20 1.45 1.63 2.51
# ... with 15 more variables: work <dbl>, religion <dbl>,
# willingness <dbl>, petition <dbl>, boycott <dbl>,
# demonstration <dbl>, strikes <dbl>, identity <dbl>,
# marital <dbl>, parents <dbl>, children <dbl>, household <dbl>,
# education <dbl>, income <dbl>, weights <dbl>
Call:
lm(formula = users ~ family + friends + leisure + politics +
work + religion, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1678.1 -610.4 -342.4 130.6 11437.5
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -405.6 5035.6 -0.081 0.936
family 3368.6 4464.5 0.755 0.453
friends -730.0 1476.1 -0.495 0.623
leisure 153.5 1244.6 0.123 0.902
politics -1405.8 877.5 -1.602 0.114
work 1052.6 1416.3 0.743 0.460
religion 168.8 512.1 0.330 0.743
Residual standard error: 1847 on 60 degrees of freedom
Multiple R-squared: 0.1275, Adjusted R-squared: 0.04025
F-statistic: 1.461 on 6 and 60 DF, p-value: 0.2069
Removing the largest p-value first:
Call:
lm(formula = users ~ family + friends + politics + work + religion,
data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1698.1 -614.1 -341.5 117.6 11443.6
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -164.8 4604.1 -0.036 0.972
family 3289.9 4382.8 0.751 0.456
friends -656.9 1340.8 -0.490 0.626
politics -1407.4 870.3 -1.617 0.111
work 1068.7 1398.8 0.764 0.448
religion 157.4 499.5 0.315 0.754
Residual standard error: 1832 on 61 degrees of freedom
Multiple R-squared: 0.1273, Adjusted R-squared: 0.05574
F-statistic: 1.779 on 5 and 61 DF, p-value: 0.1305
Removing the next largest p-value:
Call:
lm(formula = users ~ family + friends + politics + work, data = all_data,
na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1738.3 -621.8 -293.5 60.6 11473.1
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -416.8 4501.0 -0.093 0.927
family 3689.2 4165.0 0.886 0.379
friends -745.2 1301.6 -0.573 0.569
politics -1407.4 863.9 -1.629 0.108
work 1263.9 1245.1 1.015 0.314
Residual standard error: 1819 on 62 degrees of freedom
Multiple R-squared: 0.1259, Adjusted R-squared: 0.06946
F-statistic: 2.232 on 4 and 62 DF, p-value: 0.07575
Removing the next largest p-value:
Call:
lm(formula = users ~ family + politics + work, data = all_data,
na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1744.5 -645.5 -276.6 63.3 11525.3
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -970.1 4372.6 -0.222 0.8251
family 3039.9 3986.2 0.763 0.4485
politics -1512.6 839.7 -1.801 0.0764 .
work 1474.1 1183.4 1.246 0.2175
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1809 on 63 degrees of freedom
Multiple R-squared: 0.1212, Adjusted R-squared: 0.07939
F-statistic: 2.897 on 3 and 63 DF, p-value: 0.04195
Removing the next largest p-value:
Call:
lm(formula = users ~ politics + work, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1775.5 -704.3 -219.2 45.5 11535.7
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1463.3 2979.8 0.491 0.6250
politics -1417.5 827.6 -1.713 0.0916 .
work 1927.1 1020.2 1.889 0.0634 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1803 on 64 degrees of freedom
Multiple R-squared: 0.1131, Adjusted R-squared: 0.08541
F-statistic: 4.082 on 2 and 64 DF, p-value: 0.02146
Call:
lm(formula = users ~ willingness + petition + boycott + demonstration +
strikes + identity, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-2609.2 -623.3 -264.6 -26.5 10359.4
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -212.45 5053.29 -0.042 0.967
willingness -687.64 1753.88 -0.392 0.697
petition -1328.59 1274.62 -1.042 0.302
boycott 1454.15 1765.01 0.824 0.414
demonstration -3373.22 1984.10 -1.700 0.095 .
strikes 3377.05 1452.75 2.325 0.024 *
identity 31.85 588.76 0.054 0.957
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1893 on 53 degrees of freedom
(7 observations deleted due to missingness)
Multiple R-squared: 0.1779, Adjusted R-squared: 0.08481
F-statistic: 1.911 on 6 and 53 DF, p-value: 0.09602
Removing the highest p-value
Call:
lm(formula = users ~ willingness + petition + boycott + demonstration +
strikes, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-2569.1 -609.5 -241.1 20.6 10478.8
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -967.7 3878.5 -0.250 0.8038
willingness -435.5 1560.6 -0.279 0.7811
petition -1366.1 1175.7 -1.162 0.2498
boycott 1371.3 1630.5 0.841 0.4036
demonstration -2960.9 1719.6 -1.722 0.0902 .
strikes 3327.3 1347.2 2.470 0.0163 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1770 on 61 degrees of freedom
Multiple R-squared: 0.1856, Adjusted R-squared: 0.1189
F-statistic: 2.781 on 5 and 61 DF, p-value: 0.02506
Removing the next highest p-value
Call:
lm(formula = users ~ petition + boycott + demonstration + strikes,
data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-2700.7 -641.6 -283.2 57.8 10493.7
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1602 3119 -0.514 0.6092
petition -1498 1069 -1.401 0.1661
boycott 1500 1552 0.966 0.3376
demonstration -2954 1707 -1.731 0.0884 .
strikes 3266 1319 2.476 0.0160 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1756 on 62 degrees of freedom
Multiple R-squared: 0.1846, Adjusted R-squared: 0.132
F-statistic: 3.509 on 4 and 62 DF, p-value: 0.01202
Removing the next highest p-value
Call:
lm(formula = users ~ petition + demonstration + strikes, data = all_data,
na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-2590.3 -688.4 -235.1 113.7 10732.1
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -80.13 2690.23 -0.030 0.9763
petition -870.42 848.77 -1.026 0.3090
demonstration -2611.25 1668.38 -1.565 0.1226
strikes 3321.60 1317.16 2.522 0.0142 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1755 on 63 degrees of freedom
Multiple R-squared: 0.1723, Adjusted R-squared: 0.1329
F-statistic: 4.372 on 3 and 63 DF, p-value: 0.007358
Removing the next highest p-value
Call:
lm(formula = users ~ demonstration + strikes, data = all_data,
na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-2615.7 -689.7 -272.3 99.1 10722.4
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 815.7 2545.5 0.320 0.749678
demonstration -3877.1 1122.9 -3.453 0.000989 ***
strikes 3417.7 1314.3 2.600 0.011554 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1756 on 64 degrees of freedom
Multiple R-squared: 0.1585, Adjusted R-squared: 0.1322
F-statistic: 6.027 on 2 and 64 DF, p-value: 0.003997
Looking at only “demonstration”
Call:
lm(formula = users ~ demonstration, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1266.7 -766.3 -367.9 54.0 11672.1
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5120.7 2017.4 2.538 0.0135 *
demonstration -1906.5 864.6 -2.205 0.0310 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1832 on 65 degrees of freedom
Multiple R-squared: 0.0696, Adjusted R-squared: 0.05528
F-statistic: 4.862 on 1 and 65 DF, p-value: 0.031
Plotting this model
plot(mlm2f)
Looking at only “strikes”
Call:
lm(formula = users ~ strikes, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-827.2 -676.0 -592.6 -182.7 12475.0
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -222.8 2731.8 -0.082 0.935
strikes 355.3 1048.2 0.339 0.736
Residual standard error: 1898 on 65 degrees of freedom
Multiple R-squared: 0.001764, Adjusted R-squared: -0.01359
F-statistic: 0.1149 on 1 and 65 DF, p-value: 0.7358
Plotting the best model
plot(mlm2e)
Call:
lm(formula = users ~ marital + parents + children + household +
education + income, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1678.0 -748.7 -399.7 136.5 11849.2
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3333.9 4885.7 0.682 0.498
marital -437.5 692.4 -0.632 0.530
parents -2125.9 2979.5 -0.714 0.478
children -182.7 905.7 -0.202 0.841
household -125.1 798.5 -0.157 0.876
education 534.3 405.4 1.318 0.193
income -111.3 482.0 -0.231 0.818
Residual standard error: 1863 on 59 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.1261, Adjusted R-squared: 0.03726
F-statistic: 1.419 on 6 and 59 DF, p-value: 0.2226
Remove highest p-value first
Call:
lm(formula = users ~ marital + parents + children + education +
income, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1705.3 -732.8 -371.8 160.1 11859.3
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3484.2 4751.5 0.733 0.466
marital -431.2 685.6 -0.629 0.532
parents -2522.6 1558.7 -1.618 0.111
children -259.1 757.3 -0.342 0.733
education 562.5 360.3 1.561 0.124
income -126.4 468.5 -0.270 0.788
Residual standard error: 1847 on 60 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.1258, Adjusted R-squared: 0.05291
F-statistic: 1.726 on 5 and 60 DF, p-value: 0.1424
Remove next highest p-value
Call:
lm(formula = users ~ marital + parents + education + income,
data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1687.4 -785.4 -314.5 132.6 11881.5
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2784.6 4257.6 0.654 0.5156
marital -363.3 651.5 -0.558 0.5791
parents -2579.5 1538.6 -1.677 0.0988 .
education 589.4 349.0 1.689 0.0964 .
income -118.2 464.5 -0.255 0.7999
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1834 on 61 degrees of freedom
(1 observation deleted due to missingness)
Multiple R-squared: 0.1241, Adjusted R-squared: 0.06662
F-statistic: 2.16 on 4 and 61 DF, p-value: 0.08419
Remove next highest p-value
Call:
lm(formula = users ~ marital + parents + education, data = all_data,
na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1674.3 -777.4 -306.5 72.5 11854.1
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2201.8 3528.0 0.624 0.5348
marital -364.8 639.4 -0.570 0.5704
parents -2479.7 1455.2 -1.704 0.0933 .
education 568.9 319.1 1.783 0.0794 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1806 on 63 degrees of freedom
Multiple R-squared: 0.1244, Adjusted R-squared: 0.08268
F-statistic: 2.983 on 3 and 63 DF, p-value: 0.03786
Remove next highest p-value
Call:
lm(formula = users ~ parents + education, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1564.6 -760.7 -299.0 92.3 11920.8
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 874.7 2638.4 0.332 0.7413
parents -2186.2 1354.0 -1.615 0.1113
education 559.7 317.0 1.766 0.0822 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1796 on 64 degrees of freedom
Multiple R-squared: 0.1199, Adjusted R-squared: 0.09235
F-statistic: 4.358 on 2 and 64 DF, p-value: 0.01682
I’ll look at a model that uses combinations of variables from demographics as well as political variables.
Call:
lm(formula = users ~ politics + education, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1586.2 -754.7 -274.5 122.4 11471.3
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1724.5 2634.3 0.655 0.5151
politics -1595.8 801.2 -1.992 0.0507 .
education 691.4 295.5 2.340 0.0224 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1778 on 64 degrees of freedom
Multiple R-squared: 0.1375, Adjusted R-squared: 0.1105
F-statistic: 5.1 on 2 and 64 DF, p-value: 0.008809
I’ll look at a model that uses combinations of variables from demographics as well as political variables.
Call:
lm(formula = users ~ strikes + education, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1746.0 -732.5 -386.1 192.2 12134.9
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4479.7 3138.2 -1.427 0.1583
strikes 635.5 1015.2 0.626 0.5336
education 756.8 304.6 2.485 0.0156 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1827 on 64 degrees of freedom
Multiple R-squared: 0.08957, Adjusted R-squared: 0.06112
F-statistic: 3.148 on 2 and 64 DF, p-value: 0.04964
One more combination to try and understand if different variables can create a better model
Call:
lm(formula = users ~ demonstration + strikes + education, data = all_data,
na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-2708.0 -701.5 -351.0 210.3 10702.2
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2395.9 3043.2 -0.787 0.43406
demonstration -3377.8 1134.9 -2.976 0.00414 **
strikes 3225.9 1294.4 2.492 0.01534 *
education 547.2 296.0 1.849 0.06918 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1724 on 63 degrees of freedom
Multiple R-squared: 0.2018, Adjusted R-squared: 0.1638
F-statistic: 5.309 on 3 and 63 DF, p-value: 0.002512
I am going to look further at the potential correlation between countries with a propensity to engage in strikes and engage in DDOS attacks.
Call:
lm(formula = users ~ strikes, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-827.2 -676.0 -592.6 -182.7 12475.0
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -222.8 2731.8 -0.082 0.935
strikes 355.3 1048.2 0.339 0.736
Residual standard error: 1898 on 65 degrees of freedom
Multiple R-squared: 0.001764, Adjusted R-squared: -0.01359
F-statistic: 0.1149 on 1 and 65 DF, p-value: 0.7358
I am going to look further at the potential correlation between education level with a propensity to engage in strikes and engage in DDOS attacks.
Call:
lm(formula = users ~ education, data = all_data, na.action = na.exclude)
Residuals:
Min 1Q Median 3Q Max
-1533.6 -810.1 -400.2 154.9 12164.3
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2730.8 1422.6 -1.920 0.0593 .
education 735.6 301.3 2.441 0.0174 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1818 on 65 degrees of freedom
Multiple R-squared: 0.084, Adjusted R-squared: 0.06991
F-statistic: 5.961 on 1 and 65 DF, p-value: 0.01736
It may be that there are no correlations to be found here. But I want to run the analyses again using a column found in the codebook indicating ‘weights’ for population that should be used when comparing multiple variables to account for population size.
I’ll re-run the model with users and importance variables, but using the weights column. This gives me a warning that this is an “essentially perfect fit” and that the summary may be reliable. This result is consistent for each of the weighted models.
Call:
lm(formula = users ~ family + friends + leisure + politics +
work + religion, data = all_data, subset = weights, na.action = na.exclude)
Residuals:
1 1.1
-5.024e-15 5.024e-15
Coefficients: (6 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.700e+01 5.024e-15 1.134e+16 <2e-16 ***
family NA NA NA NA
friends NA NA NA NA
leisure NA NA NA NA
politics NA NA NA NA
work NA NA NA NA
religion NA NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.105e-15 on 1 degrees of freedom
Call:
lm(formula = users ~ willingness + petition + boycott + demonstration +
strikes + identity, data = all_data, subset = weights, na.action = na.exclude)
Residuals:
1 1.1
-5.024e-15 5.024e-15
Coefficients: (6 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.700e+01 5.024e-15 1.134e+16 <2e-16 ***
willingness NA NA NA NA
petition NA NA NA NA
boycott NA NA NA NA
demonstration NA NA NA NA
strikes NA NA NA NA
identity NA NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.105e-15 on 1 degrees of freedom
Call:
lm(formula = users ~ marital + parents + children + household +
education + income, data = all_data, subset = weights, na.action = na.exclude)
Residuals:
1 1.1
-5.024e-15 5.024e-15
Coefficients: (6 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.700e+01 5.024e-15 1.134e+16 <2e-16 ***
marital NA NA NA NA
parents NA NA NA NA
children NA NA NA NA
household NA NA NA NA
education NA NA NA NA
income NA NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.105e-15 on 1 degrees of freedom
Call:
lm(formula = users ~ demonstration + strikes + education, data = all_data,
subset = weights, na.action = na.exclude)
Residuals:
1 1.1
-5.024e-15 5.024e-15
Coefficients: (3 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.700e+01 5.024e-15 1.134e+16 <2e-16 ***
demonstration NA NA NA NA
strikes NA NA NA NA
education NA NA NA NA
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.105e-15 on 1 degrees of freedom
country surveillance monitor collect users
1 Albania 2.443206 3.027178 2.951220 57
2 Andorra 2.261952 3.588645 3.569721 6
3 Argentina 2.499501 3.044865 2.775673 11
4 Armenia 2.359333 2.657333 2.552000 16
5 Australia 1.787645 2.877551 2.896856 717
6 Austria 2.495134 3.085158 3.333333 3276
Call:
lm(formula = users ~ surveillance + monitor + collect, data = ivs_right)
Residuals:
Min 1Q Median 3Q Max
-1285.4 -692.4 -360.4 10.9 11564.8
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -788.8 1407.0 -0.561 0.577
surveillance -992.7 847.5 -1.171 0.246
monitor -1297.9 1726.1 -0.752 0.455
collect 2516.6 1533.5 1.641 0.106
Residual standard error: 1855 on 63 degrees of freedom
Multiple R-squared: 0.0762, Adjusted R-squared: 0.0322
F-statistic: 1.732 on 3 and 63 DF, p-value: 0.1695
removing highest p-value
Call:
lm(formula = users ~ surveillance + collect, data = ivs_right)
Residuals:
Min 1Q Median 3Q Max
-1537.0 -711.1 -431.3 10.0 11813.0
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -876.5 1397.4 -0.627 0.5327
surveillance -1278.4 755.1 -1.693 0.0953 .
collect 1487.9 690.5 2.155 0.0350 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1848 on 64 degrees of freedom
Multiple R-squared: 0.0679, Adjusted R-squared: 0.03878
F-statistic: 2.331 on 2 and 64 DF, p-value: 0.1054
removing highest p-value
Call:
lm(formula = users ~ collect, data = ivs_right)
Residuals:
Min 1Q Median 3Q Max
-1070.4 -707.3 -573.1 -203.9 12247.4
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1136.8 1408.7 -0.807 0.423
collect 620.0 469.2 1.321 0.191
Residual standard error: 1875 on 65 degrees of freedom
Multiple R-squared: 0.02616, Adjusted R-squared: 0.01117
F-statistic: 1.746 on 1 and 65 DF, p-value: 0.191
For attribution, please cite this work as
Becvar (2022, April 26). IT Army: Further Analysis. Retrieved from https://kbec19.github.io/it-army/posts/further-analysis/
BibTeX citation
@misc{becvar2022further, author = {Becvar, Kristina}, title = {IT Army: Further Analysis}, url = {https://kbec19.github.io/it-army/posts/further-analysis/}, year = {2022} }